Fourier series
Let
consider the output waveform of the power electronics devices is $f(t)$ and Fourier series representation of $f(t)$ is as follows:
$f(t)$ = $a_0$ + $\sum ^\infty _{n=1}$ $(a_n \cos (n\omega_0 t) + b_n \sin (n\omega_0 t))$
Where,
$a_0 =\frac{1}{T} \int ^{T}_{0} f(t) dt$
$a_n = \frac{2}{T} \int ^{T}_{0} f(t) \cos (n \omega t) dt$
$b_n = \frac{2}{T} \int ^{T}_{0} f(t) \sin (n \omega t) dt$
Here if : $f(t)$ is even function $\implies$ $f(t) = f(-t)$ $\implies$ $b_n$ = 0, $a_0 , a_n$ $\neq$ 0
$f(t)$ is odd function $\implies$ $f(t) = -f(-t)$ $\implies$ $b_n \neq$ 0, $a_0 , a_n$=0
$f(t)$ is half wave symmetric $\implies$ $f(t+ \frac{T}{2}) = -f(t)$ $\implies$ only odd harmonics (n=1,3,5...)
$f(t)$ is half wave symmetric $\implies$ $f(t+ \frac{T}{2}) = -f(t)$ $\implies$ only odd harmonics (n=1,3,5...)
Example-1
Consider square waveform v(t) as shown in figure
Here, $a_0,a_n$ = 0 because of half wave symmetric .
0 Comments